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Summary 

 In the latest Advisory Circular AC-83J, Appendix A.11.4 provides guidance to all 

CFI’s relating to the subject: “Return to Field/Single-Engine Failure on Takeoff”, i.e.,  

(1) “Flight instructors should demonstrate and teach trainees when and how to make 

a safe 180-degree turnback to the field after an engine failure”. 

 

(2) “Flight instructors should also teach the typical altitude loss for the given make 

and model flown during a 180-degree turn, while also teaching the pilot how to 

make a safe, coordinated turn with a sufficient bank. These elements should give 

the pilot the ability to determine quickly whether a turnback will have a successful 

outcome. During the before-takeoff check, the expected loss of altitude in a 

turnback, plus a sufficient safety factor, should be briefed and related to the 

altitude at which this maneuver can be conducted safely. In addition, the effect of 

existing winds on the preferred direction and the viability of a turnback should be 

considered as part of the briefing”.  

The question that is most asked by Pilots about the turnback maneuver is “How high 

above the runway do I need to be before attempting a turnback maneuver?” In a recent 

NAFI webinar Capt Brian Schiff came up with a Rule-of-Thumb (ROT) regarding this 

altitude. Schiff’s ROT is based on a 13-step flight experiment that the Pilot was required 

to perform. It required the Pilot to determine the altitude loss during a 45-degree banked 

gliding turn, at a speed no faster than best glide speed (or slightly lower), and after 

turning 360 degrees, the aircraft is rolled to a wings level attitude, and then flaring the 

aircraft to the point where the vertical speed went to zero. The total altitude loss during 

this flight experiment was designated as the “Observed Altitude Loss (OAL)”. An 

additional 50% safety factor was then added to this altitude. Schiff designated this 

altitude as the “Turnback Height (TH)”, Once these altitudes are determined, Schiff’s 

ROT then comes into play, i.e.,  

Do not consider a turnback maneuver unless:  

(1) The aircraft has reached at least 2/3 of the OAL when over the departure end 

of the runway (DER), and  

(2) The aircraft has reached at least the TH 
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Unfortunately, the details of how this ROT was developed, and what flight scenarios 

were utilized, is not discussed. In addition, there is no information on how far from the 

DER the turnback maneuver was initiated. For example, if the Pilot reached the TH at 

½-mile from the DER, could one still make it back at ¾-mile from the DER? It is 

important to remember that every ROT must come with the limitations on when the ROT 

is to be used. Schiff does not provide this information. 

  As an Aerodynamicist for over five decades, one must question the validity of 

such a ROT. One would expect the altitude loss in the turnback maneuver to depend on 

the distance from the DER at which the turnback is initiated. However, if the aircraft was 

able to successfully execute a turnback maneuver at some distance from the DER, the 

magnitude of both the climb and glide angles would be a major factor in determining 

whether the aircraft could successfully execute a turnback maneuver at all distances 

beyond that point. 

To satisfy the requirements of Appendix A11.4, we have developed a consistent 

steady-state aerodynamic analysis of the teardrop turnback maneuver under a no-wind 

condition. Although the no-wind condition is not the prevalent scenario for aircraft 

departures, it allows one to study both the exact geometry and the corresponding 

aerodynamics of the teardrop turnback maneuver. Understanding the geometry of the 

teardrop turnback maneuver provides a significant amount of information about the 

limitations of the turnback maneuver. We show that the teardrop turnback maneuver is 

composed of three segments. The first segment of the maneuver involves a gliding turn 

at some specified airspeed and bank angle, after which the Pilot rolls out on a heading 

that points the aircraft directly at the DER. In the second segment, the aircraft is in a 

wings-level glide at a specified speed. In the third segment, the aircraft is also in a 

gliding turn at a specified airspeed and bank-angle, which then, allows the aircraft to roll 

out over the runway centerline with just enough altitude remaining to flare the aircraft to 

a landing. 

Knowledge of the geometry of the teardrop turnback maneuver under a no-wind 

condition provides the following important information: 

(1) If the turnback maneuver is initiated at some distance D  from the DER, after 

completion of the turn in Segment 1, the distance of the aircraft from the DER 

is exactly equal to D . 

(2) At the completion of Segment 1, the Pilot will have turned the aircraft 180+

degrees, where  is intercept angle to the runway centerline. The angle  is 

only a function of 
1

D

R
, where R1, is the radius of the turn in Segment 1, and 

depends on the aircraft TAS and bank angle flown. Thus, if the Pilot initiates 

the turnback at a distance D  from the DER, the Pilot can only control the 

intercept angle by varying R1. 
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(3) During Segment 2, the aircraft is in a wings-level glide for a distance slightly 

less than D . 

(4) Segment 3 is a final gliding turn in which the Pilot turns the aircraft in the 

opposite direction  degrees, to roll out over the centerline of the runway. 

Thus, depending on the TAS and bank angle flown in Segment 3, there must 

be sufficient distance to lead the turn in order for the Pilot to roll out over the 

runway centerline, since overshooting the centerline could lead to the 

possibility of an accelerated stall. 

Therefore, we see that during the turnback maneuver the aircraft will be turning a 

total of 180 2+   degrees, plus gliding a distance slightly less than D . This information 

allows one to make a quick estimate of the altitude loss in the turnback maneuver. 

However, limitations exist on how close to the DER the turnback maneuver can be 

initiated. If we constrain the maximum intercept angle to approximately 55 degrees, and 

also allow for a minimum bank angle of 15 degrees in Segment 3, we show that the 

turnback maneuver should not be initiated any closer than 
1

1.93
D

R
= .Thus, just 

understanding the geometry of the teardrop turnback maneuver, provides us with a 

heads-up on some key limitations in performing the turnback maneuver. 

It is important for all Pilots to understand that there are three key factors that 

determine the altitude loss in the teardrop turnback maneuver. These are: 

(1) Aerodynamics of the specific aircraft being flown 

(2) Environment: Windspeed and direction relative to the runway alignment 

(3) Pilot skills in performing the maneuver 

The aerodynamics is the key component because it determines the expected 

altitude loss (EAL) when performing the maneuver under a no-wind condition. The 

environment modifies the performance of the aircraft and thus the EAL. Finally, if the 

Pilot flies the aircraft according to the aerodynamics, then the outcome will be the EAL 

in the maneuver. However, non-optimal Pilot skills when executing this maneuver can 

only increase the EAL. 

 Since the altitude loss in the turnback maneuver is the sum of the altitude losses 

in all 3 segments, two of which are gliding turns, and one a wings-level glide, it is 

necessary to determine the altitude loss in both gliding turns and wings-level glides. An 

understanding of “Basic Aerodynamics” is all that the Pilot needs to determine this 

information.  We define “Basic Aerodynamics” as the subject of Aerodynamics 

discussed in the latest Handbook of Aeronautical Knowledge (FAA 8083-25B, Chapter 

5). It is based on the concept of steady-steady aerodynamics, which refers to the fact 

that one does not account for the time it takes to get from one aircraft attitude to the 

next. For example, if the bank angle went from zero to 45-degrees, the 45-degree bank-

angle would occur immediately. This approximation is routinely used in the field of 
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Aerodynamics and provides a reasonably accurate answer to the problem being 

analyzed. 

 With the knowledge of the geometry of the teardrop turnback maneuver, one can 

develop the aerodynamics to minimize the EAL in performing the turnback maneuver. 

For example, in Segment 2, our goal is to minimize the altitude loss per horizontal 

distance travelled. Thus, the Pilot needs to fly this segment at the angle-of-attack 

corresponding to the maximum L/D. Depending on the weight of the aircraft, the 

airspeed can be determined in flying this segment.  

 Segments 1 and 3 are gliding turns, and so the Pilot is trying to minimize the 

altitude loss per degree of turn. Again, “Basic Aerodynamics” provides the formula for 

the altitude loss per degree of turn (
dh

d
) as   

 1 3

2 4

( )
180

F Fdh

d F F




=  

One determines this equation by dividing the rate of descent in feet/sec by the rate of 

turn in degrees/sec. Here, F1, F2, F3, and F4 are defined as: 
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Where  
W

S
 is the wing loading, g, the Earth’s gravitational constant,   the air density, 

  the bank angle, CL the lift coefficient, and L/D, the lift to drag ratio in the turn. Thus, 

all the information on how the Pilot should fly the gliding turn is in the above formula. It 

is easy to see the equation for 
dh

d
 contains the information about how aircraft weight, 

air density, bank angle, and angle-of-attack influence the altitude loss per degree of turn 

in a gliding turn. Here we identify one of the key parameters controlling the altitude loss 

per degree of turn as the ratio of the aircraft weight to the air density, i.e.,
W


. Higher 

values of this ratio, i.e., gross weight and high-density altitudes, increase the OAL. 

Therefore “Performing a flight experiment in an attempt to determine the altitude loss 

per degree of turn under one set of conditions, cannot blindly be applied to a different 

set of conditions”. Everything about how to scale the altitude loss per degree of turn is in 

the above equation. 
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 In order to minimize the altitude loss in the turnback maneuver, we show that in 

the wings-level glide segment, the aircraft must be flown at the angle-of-attack for 

maximum L/D ratio, i.e. best glide speed. Whereas, in the gliding turn segments, the 

aircraft must be banked at 45 degrees, while flying just below the stall angle-of-attack, 

i.e. just above the accelerated stall speed for the weight of the aircraft.   

 Using the above information, we demonstrate how to create a chart which shows 

the EAL incurred during the turnback maneuver versus the distance D , at which the 

turnback maneuver is initiated. This chart answers the key question, “How much altitude 

do we need for a “Potentially Successful Turnback Maneuver (PSTM)”? We use the 

term PSTM to indicate that both the aerodynamics and environment may allow for a 

PSTM, however, the non-optimal Piloting skills may not allow for a successful outcome. 

However, the real question one should be asking is: “How can the Pilot utilize this 

information when the engine fails after departure?  Although the Pilot may have this 

information in front of him/her, the Pilot must determine if the altitude the aircraft is at 

when the engine fails corresponds to the distance from the DER shown in the chart. 

This task is not something the Pilot should be engaged in during this emergency.  

 In order to mitigate the risk of having the correct altitude, but at the incorrect 

distance from the DER, we utilize an “inverse method”, which uses the EAL in the 

turnback maneuver to obtain a “Required Minimum Runway Length (RMRL)” chart. This 

chart shows the minimum runway length as a function of distance from the DER, which 

would allow for a PSTM. The Pilot can review this chart prior to takeoff to determine 

when “Never to attempt a turnback maneuver”. For example, if the runway length is 

greater than the RMRL, a PSTM can be anticipated. If the runway length is less than the 

RMRL, an “Impossible Turn” exists, and the Pilot should never attempt a turnback 

maneuver. Finally, the runway length may only allow for a PSTM over some range of 

distances from the DER. This can be a risky scenario for the turnback maneuver unless 

the Pilot is aware of this situation prior to departure. 

We have chosen to utilize a C-172 as an example of how to generate the above 

chart and compare these results with the Schiff ROT for when to initiate a turnback 

maneuver. We show that the Schiff method does not adequately capture the true 

altitude loss in the turnback maneuver, since it does not consider the altitude loss in 

Segment 2. We have compared the aerodynamic model to the Schiff ROT for the case 

of a C-172 at gross weight, departing both a sea level airport (ISA), and a 5000-foot 

density altitude airport. In the case of the aircraft departing a sea level airport, we show 

that the Schiff ROT dismisses PSTM’s between 800 and 2900 feet from the DER. This 

is due to the 50% safety factor on the “Observed Altitude Loss (OAL). In addition, 

Schiff’s 2/3 of the OAL requirement on the altitude above the DER is shown to be too 

low, since the aerodynamic model predicts 82% of the OAL would allow for a PSTM 

beyond 800 feet from the DER. 
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Schiff’s ROT applied to the 5000-foot density altitude airport, shows PSTM’s 

beyond 5100 feet from the DER. However, the aerodynamic model shows an 

“Impossible Turn” for all distances beyond 800 feet. One needs to increase the height 

over the DER to 95% of the OAL for a PSTM to occur between 800 and 4900 feet from 

the DER. Beyond 4900 feet from the DER, an “Impossible Turn” exists. This is due to 

the magnitude of the climb angle being less than the glide angle at this density altitude. 

Since the glide angle is independent of altitude, whenever a density altitude is reached 

for which the climb angle becomes less than the glide angle, such a situation is 

expected to occur. It is important that all Pilots are aware of this fact, since it confines a 

PSTM to a narrow region beyond the DER. These scenarios usually occur when flying 

aircraft with a relatively higher power loading, i.e., a C-172. Therefore, the author 

recommends extreme caution in initiating a turnback maneuver at a high-density altitude 

airport. 

 The consistent geometric/aerodynamic analysis developed here, can easily be 

used to develop the RMRL chart for the any aircraft being flown. In addition, it provides 

a method for optimizing the takeoff/climb profile to minimize the RMRL. For example, if 

the airspeed flown in Segment 1 for the initial turn is close to midway between VX and 

VY, the aircraft will need to give up additional altitude in order to obtain its target V1 

airspeed prior to executing the turnback maneuver. Thus, it may be better to fly an 

airspeed closer to VY in the takeoff/climb profile to mitigate some of this loss of this 

altitude.  In addition, we also show that the important parameter to monitor during the 

climb-out is the height of the aircraft passing over the DER, rather than a percentage of 

the OAL, since the RMRL is based on attaining this altitude over the DER. 

 Item (2) from Appendix A11.4 described in the beginning of the paper discusses 

the use of safety factors. Safety factors arise due to two uncertainties. First, the 

uncertainty in the aerodynamic data of the aircraft. These uncertainties can be 

quantified by flying the aircraft in both wings-level and gliding turns and backing out the 

aerodynamic data that is used in the analysis. The second uncertainty is due to the Pilot 

skills. It is important to understand that using large safety factors, such as in the Schiff 

ROT, can be overly conservative, in that it dismisses opportunities for PSTM’s. When it 

comes to safety factors, it is important to take a “Surgical Approach”. For example, in 

this aerodynamic model of the turnback maneuver, the altitude loss in each of the 3 

segments is determined. In the “Surgical Approach”, one can carefully apply different 

safety factors to each of the 3 segments, thereby reducing the overall conservativeness 

of the uncertainty.  

 Although the aerodynamic model of the turnback maneuver can determine the 

exact ground track of the aircraft under any wind condition, we provide a simple method 

to account for the wind effect on the turnback maneuver. In this method, the climb angle 

and glide path angle are corrected for the wind and are then used to determine the 

altitude loss in the turnback maneuver, which in turn, is then used to develop the RMRL 

chart. 
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We should point out that all the results shown in the paper were developed in a 

simple Excel Workbook, making it very easy for every Pilot to develop and display the 

charts needed to fully understand the effect of varying the key parameters on the 

potential success of executing a turnback maneuver. The Excel Workbook can be 

loaded onto an IPAD or other mobile device and used in the preflight preparation for the 

flight. However, the key takeaway is that the method used in the paper allows the Pilot 

to make the decision on the ground, rather than after departing the airport. 

 The author recommends a standardized training program for those Pilots interested 

in becoming proficient in executing the turnback maneuver. This program should include 

at least the following subjects: 

(1) Aerodynamics of the turnback maneuver 

(2) Stick and rudder skills in performing the turnback maneuver 

(3) ADM and risk management in the decision to execute the turnback maneuver 

Finally, it is important that all Pilots understand that acquiring the proper knowledge 

of the aerodynamics of the turnback maneuver is just as important as possessing the 

stick and rudder skills necessary to perform the turnback maneuver. We should all 

remember the adage, “The Devil is in the Details”. If we do not heed this adage, all we 

can look forward to, is becoming just another NTSB accident statistic. 
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1. Introduction 

In a recent webinar by Capt. Brian Schiff, the speaker discussed how the so-

called “Impossible Turn” could become the “Possible Turn” when discussing the 

engine failure after takeoff in a single-engine aircraft. His goal was to develop a simple 

worksheet to determine the so-called “Minimum Turnback Altitude” that would be 

required for a PSTM. The turnback maneuver was based on a teardrop procedure for 

returning to the runway. Schiff describes the experiment as follows: 

(1) On a cardinal heading, establish a stabilized climb halfway between 
XV  and 

YV . 

(2) Upon reaching a safe cardinal altitude, retard the throttle. 

(3) Do nothing for 5 seconds and hold the nose up without stalling. 

(4) After 5 seconds, simultaneously roll the aircraft into a 45-degree banked turn 

and pitch for no faster than best glide speed (or slightly lower). 

(5) Continue this maneuver until completing a 360-degree turn. 

(6) Roll out of the turn. 

(7) Perform a moderately aggressive flare to simulate a landing. 

(8) Note the altitude when the vertical speed becomes zero. 

(9) The resultant altitude loss during the gliding turn is termed the” Observed 

Altitude Loss (OAL)”. 

(10) Increase the OAL by 50% to arrive at the altitude lost in the teardrop 

turnback maneuver, or as Schiff calls it, the “Turnback Height (TH)”. 

(11) Add this altitude lost to the airport elevation to determine the “Minimum 

Turnback Altitude”. 

Schiff also indicates that this procedure is for a “given aircraft and configuration”. I 

assume configuration would mean aircraft weight, flap setting, etc. Since Schiff puts 

forth a ROT for this “turnback altitude”, one would expect to see the limitations under 

which this ROT can be used. Schiff does not provide any. In addition, there is no 

process described that shows how this ROT was developed and validated. 

 After digesting the above procedure, one must ask the following questions: 

(1) How does one scale the altitude lost in the Schiff experiment to a different 

aircraft weight configuration? 

(2) How does one scale the altitude lost in the Schiff experiment to the higher 

density altitude airports 

(3) Does it make sense that this so-called “Turnback Altitude” would be 

independent of the distance from the departure end of the runway where 

the turnback maneuver is initiated? For example, if the “Turnback Height” 

is 800 feet, will that altitude allow the aircraft to make it back to the runway 

whether the turnback maneuver is initiated at a point ½ mile or ¾ mile 

from the departure end of the runway.  
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To answer these questions, we need to take a step back and view the teardrop 

turnback maneuver through a different lens. One can simplify the teardrop turnback 

maneuver in a way that the results provide a significant amount of insight into a real 

scenario of a turnback maneuver. The simplification is that we assume the windspeed is 

zero. Although this is not the most common scenario experienced during a takeoff, it 

does occur in the realm of flight. In fact, it can be shown to be a conservative estimate 

for the expected altitude lost (EAL) in the turnback maneuver. It also relates to Murphy’s 

Law as it pertains to the turnback maneuver. Here Murphy’s Law states “After departing 

into the wind, as soon as the engine fails, the windspeed goes to zero”. 

The analysis that is developed in this paper is based on a formal 3-step 

approach. In Step 1, we analyze the geometry of the teardrop turnback maneuver. 

Understanding the geometry of the maneuver, including the geometric properties of the 

teardrop maneuver, provides us with a significant amount of information about the 

limitations of the maneuver. In Step 2, we use this information to develop a simple, but 

accurate steady-state aerodynamic model of the teardrop turnback maneuver. The 

aerodynamic model provides all the necessary information on how to fly the maneuver. 

The results of the aerodynamic model allow us to determine the EAL in the turnback 

maneuver as a function of distance from the departure end of the runway (DER). 

Finally, in Step 3, we specify a takeoff/climb profile for the aircraft, and using the 

information in Step 2, we create a chart which determines the “Required Minimum 

Runway Length (RMRL) as a function of distance from the DER, that will allow for a 

PSTM. This chart can be reviewed prior to departure, and based on the aircraft 

aerodynamics, will let the Pilot know when “Never to Attempt a Turnback Maneuver”. 

In Section 2, we study the geometry of the teardrop turnback maneuver, to 

understand the important limitations when executing this maneuver. In Section 3, we 

develop the aerodynamic model of the turnback maneuver. In Section 4, we develop the 

RMRL chart for a C-172. In Section 5, we compare the aerodynamic model of the 

turnback maneuver with the Schiff Rule-of-Thumb, for determining when to initiate a 

turnback maneuver. In Section 6, we summarize the conclusions of the White Paper. 

Finally, in Appendix A, we develop a simple conservative wind correction algorithm to 

account for the effect of the wind on the RMRL. 
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2. Teardrop Turnback Maneuver Geometry 

We will start by just considering the geometry of the teardrop turnback maneuver. 

We see that the aircraft climbs out along the extended centerline of the runway and at 

some distance from the departure end of the runway (DER), the engine fails. Whether 

you consider the lag time of 5 seconds or not does not make a difference in 

understanding the geometry of the turnback maneuver. Figure 1 show the geometry of 

the teardrop turnback maneuver. If at some distance D , from the DER, the aircraft 

initiates a gliding turn using some undetermined bank angle and airspeed, then rolls out 

on a heading that points the nose of the aircraft directly at the DER, the distance from 

that point to the DER is exactly equal the distance D along the extended centerline of 

the runway. This is a geometric property of the teardrop maneuver.   

              

 

                Figure 1: Geometry of the Teardrop Turnback Maneuver.  

 

The teardrop turnback maneuver is composed of three segments. Segment 1 is a 

gliding turn initiated from point D on the extended centerline of the runway. This 

segment is flown at some predetermined bank angle and airspeed (i.e. 1  and V1). At 

the end of this segment, the aircraft rolls out on a heading that points the nose of the 

aircraft directly at the DER. The angle   is the intercept angle to the runway centerline. 

For a teardrop geometry, the intercept angle is only a function of the parameter 
1

D

R
, 

R1 R3 
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where R1 is the radius of the turn in segment 1. Figure 2 shows the intercept angle 

versus 
1

D

R
. This figure provides considerable insight into the observed variation. For 

example, for a given value of R1, as D  gets very large, we see that the intercept angle 

starts to approach zero. Consider making a 180-degree turn two miles from the DER. At 

this distance, if R1 is 400 feet, D /R1 =26.4. Therefore, to the Pilot, it appears that the 

aircraft is close to the centerline of the runway at the completion of the 180-degree turn. 

Thus, in this scenario, the total number of degrees turned in segment 1 approaches 180 

degrees (i.e. 0 = ). 

 

 

 

      Figure 2: Variation of the Intercept angle versus D/R1 

 

Now, consider another limiting case. In this scenario, the aircraft initiates the turnback 

maneuver at a distance D =R1. Figure 3 shows this scenario, sometimes termed the 

“270-90 Turnback Maneuver”. Since D /R1=1, the intercept angle is 90 degrees. In this 

scenario the aircraft turns 270 degrees from the extended centerline of the runway and 

approaches perpendicular to the DER. This can be a dangerous scenario, since the 

aircraft must then make a 90-degree turn in the opposite direction to the turn in 

Segment 1 at low altitude to align the aircraft with the runway centerline. In the case of a 

wind, this scenario sets the Pilot up for an overshoot of the runway centerline, leading to 

the possibility of a fatal accelerated stall. In the “270-90” scenario, the aircraft is 

required to turn a total of 360 degrees. One observation of this scenario is initiating a 

turnback maneuver too close to the DER can easily lead to an “Impossible Turn”.  
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                           Figure 3: “270-90” Turnback Scenario 

 

Continuing on to segment 2, we observe that in this segment the aircraft is 

gliding with the wings level at a predetermined speed V2, for a distance somewhat less 

than D , after which, the aircraft enters Segment 3, a final turning segment at a 

predetermined bank angle and airspeed (i.e. 3 3,V ). Specifying both 3 and V3 will 

determine the radius of the turn in segment 3, i.e. R3.  

In Segment 3, the aircraft will be turning somewhere between 0 and 90 degrees, 

depending on the ratio of D /R1. It is best to avoid a large intercept angle in Segment 3, 

since large angles may not provide sufficient lead for the final turn so that the aircraft 

will overshoot the runway centerline after rolling out on the runway heading. Thus, one 

can set a limit on the maximum value of the intercept angle. Note that a 55-degree 

intercept angle will occur when 
1

1.92
D

R
= . In addition, it can also be shown that in order 

to ensure a sufficient lead for the final turn when using a minimum bank angle of 15 

degrees, no turnback maneuver should be initiated less than 
1

1.93
D

R
=  from the DER. 
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Thus, avoiding a turnback maneuver when 
1

2
D

R
  would keep the Pilot out of a potential 

“Impossible Turn” situation.  We will discuss this issue later in the paper when we 

determine the bank angles and airspeeds for the 3 segments of the turnback maneuver. 

 With the above understanding of the geometry of the teardrop turnback 

maneuver, we can now develop an aerodynamic model of the turnback maneuver. In 

Step 2, we demonstrate how one determines the formulas necessary to obtain the 

expected altitude loss (EAL) for both wings level glides and gliding turns. 
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3. Aerodynamic Analysis for Determining the Altitude Loss during 

both Wings Level Glides and Gliding Turns 

This task requires an understanding of “Basic Aerodynamics”. I define “Basic 

Aerodynamics” as the subject of Aerodynamics discussed in the latest Handbook of 

Aeronautical Knowledge (FAA 8083-25B, Chapter 5).  

We will start with Segment 2, the wings level glide portion of the turnback 

maneuver. The first question one asks is “What is the Pilot attempting to accomplish in 

this segment?”. Clearly, the goal is to lose the minimum amount of altitude over the 

distance D . To accomplish this goal, the Pilot must fly the aircraft at the angle-of-attack 

for maximum L/D. From an Aerodynamicist standpoint, it is best to use angle-of-attack 

rather than airspeed, since the airspeed for best glide is a function of the weight of the 

aircraft. However, one should know the maximum L/D occurs at a fixed pitch attitude, 

independent of both the weight of the aircraft and the altitude. One can derive this result 

by noting that the maximum L/D occurs at given angle-of-attack, and a given L/D results 

in given flight path angle. Since the pitch attitude is related to both the angle-of-attack 

and the flight path angle, the pitch attitude is constant, and is independent of the aircraft 

weight and altitude.  

To determine the altitude loss in this segment, one can go the Emergency 

Section of the POH and look for the “Maximum Glide” figure. For example, for a C-172, 

the L/D is approximately 9.1. Therefore, for every thousand feet traveled horizontally, 

the aircraft will lose approximately 110 feet of altitude. Thus, we now know how to 

determine the altitude loss in Segment 2. In addition, we also know the aircraft will be 

flown at an airspeed corresponding to maximum L/D (i.e. best glide speed) for the 

corresponding weight of the aircraft. In the case of a C-172 at gross weight, the best 

glide speed is 65 KCAS. 

We now turn our attention to the aerodynamics of the turning segments of the 

turnback maneuver. We start with Segment 1. From Figure 1, we see that we need to 

determine the bank angle and angle-of-attack to fly this segment. Since the aircraft is in 

a gliding turn in this segment, the goal here is to minimize the altitude loss per degree of 

turn (i.e.,
dh

d
). Recall, the total number of degrees of turn required is 180 degrees plus 

the intercept angle, i.e., 180Total = + . So whatever number of degrees one needs to 

turn, the Pilot needs to minimize the altitude loss per degree of turn. 

To determine the altitude loss per degree of turn, we need to divide the rate of 

descent of the aircraft by the rate of turn of the aircraft. The formulas for both quantities 

are given in FAA 8083-25B. We can express the rate of descent of the aircraft in ft/sec 

as  

 SinTAS g

dh
V

dt
=      (1) 
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Here g is the glide angle in degrees, and 
TASV is the aircraft TAS in feet per second. 

Similarly, the aircraft rate of turn in radians/sec is given by  

 TASVd

dt R


=      (2) 

Here, R is the radius of the turn in feet. Using the turn dynamics equation, we can 

express R as 

 
2

Tan Cos

TAS

g

V
R

g 
=


     (3) 

Where  is the bank angle, and g is the Earth’s gravitational constant (i.e. 
232.174 / secft ). 

 Using these formulas, we can express 
dh

d
 as follows: 

 Sin g

dh
R

d



=      (4) 

After a little algebra, the resulting expression for the altitude loss per degree of turn is 

given by 

                                                        1 3

2 4

( )
180

F Fdh

d F F




=        (5) 

We have grouped the parameters in the above equation in such a manner that they are 

essentially independent of each other. We define the iF ’s as follows: 

(a) 
1

4
( )

W
F

g S
=   is the aircraft wing loading function, where g is the Earth’s 

gravitational acceleration, W the aircraft weight, and S the wing area in ft2 

 

(b) 2F =  is the air density, units are in slugs/ft3 (i.e., sea-level density is 

30.002378 slugs/ft ) 

(c) 3
2 2

1

2sin cos ( / )
F

D L
=

  +
 is defined as the “Bank Angle Function”, with    

the bank angle, and D/L is the inverse of the lift to drag ratio flown in the turn 

                                                     

(d) 4 ( )L

L
F C

D
=  is defined as the “Aerodynamic Function”, and only depends on 

angle-of-attack 
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We should point out that while F1, F2, and F4 are completely independent of each other, 

i.e., changing the value of one of the Fi ‘s does not change any of the others, F3 has a 

very weak coupling to the aerodynamics of the aircraft through the L/D ratio. Thus, 

changing F4, would have a very slight effect on the change in F3. 

 We now have all the information we need to determine the correct bank angle 

and angle-of-attack to fly in Segment 1. To minimize the altitude loss per degree of turn, 

we need to minimize F1 and F3, and maximize F2 and F4. However, F1 and F2 are not 

minimized since they define the conditions under which the aircraft is being flown. 

However, it does show both higher aircraft weight and density altitude will lead to 

increased altitude loss per degree of turn.  Since F1 is proportional to the aircraft weight, 

performing the results of the Schiff experiment at one particular weight will need to be 

scaled if the results of the experiment were to be used with a different aircraft weight at 

takeoff.  Thus, if one performed the Schiff experiment with the Pilot and CFI aboard the 

aircraft (i.e.,10% below gross weight) and determined the “Observed Altitude Loss 

(OAL)”, there would be a 10% increase in the OAL if the aircraft encountered the engine 

failure at gross weight at the same altitude. We have now answered question (1) in the 

beginning of this paper. Figure 4 shows the correction for the weight when performing 

the experiment at a weight other than the gross weight of the aircraft. Note that this 

figure is predicated on flying the aircraft at the airspeed based on the reduced weight of 

the aircraft. 

 

 

   Figure 4: Weight Effect on Altitude Loss in Turnback Maneuver (F1) 
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 Next, let us now assume the Schiff experiment was performed at an altitude of 

3000 MSL. If the same weight of the aircraft was used to perform the experiment at a 

density altitude of 6000 feet, the OAL would be approximately 20% more than that 

recorded in the original experiment. This variation is shown in Figure 5. Note, that 

Figures 4 and 5 reference the changes in the altitude loss per degree of turn to gross 

weight and sea level altitude. Thus, one should perform the experiment using a gross 

weight and sea level altitude, and then scale the results using Figures 4 and 5. Under 

these conditions 

                                                            1

2

4
( ) ( ) GW

SL

WF

F g S
=      (6) 

Consider that we set up the Schiff experiment such that  

 
4

( )
W

g S
= 

4
( ) GW

SL

W

g S
      (7) 

This would result in the following formula 

 
GW SL

W

W




=       (8) 

Thus, if one chose the altitude for the Schiff experiment, the above formula would 

tell the Pilot how much the aircraft should weigh in order for the altitude loss per degree 

of turn be equivalent to the turnback maneuver being performed at gross weight at a 

sea level airport. However, the Pilot will need to fly the same bank angle at the 

appropriate lower speed that corresponds to this reduced weight to be at the same 

angle-of-attack. As an example, consider the gross weight of the aircraft to be 2300 lbs. 

If the Schiff experiment is performed at an altitude of 3000 MSL (standard atmosphere), 

the aircraft should weigh approximately 9% below gross weight in order to obtain the 

altitude loss per degree of turn corresponding to the aircraft at gross weight at sea level. 

We have now answered question (2) in the beginning of this paper. Recall that the 

Schiff rule-of-thumb adds a 50% safety factor to the OAL for the 360-degree turn, but 

does not correct for the weight and altitude difference between the experiment and the 

actual conditions under which the turnback maneuver is flown. This is clearly a 

deficiency in the Schiff model, since it eats into the 50% safety factor that Schiff adds to 

OAL. 
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               Figure 5: Density Correction for F2 Referenced to Sea Level Density 

 

The remaining two parameters, F3 and F4, are now used to determine the 

optimum bank angle and angle-of-attack while flying the aircraft in Segment 1. Since we 

need to minimize the Bank Angle Function, we determine that this will occur when the 

bank angle is given by  

 1 21
Cos [ ( ) ]

2

D

L

− = −      (9) 

Here, 
D

L
 is the inverse of the lift to drag ratio flown in the turn. Figure 6 shows a plot of 

the F3 function versus bank angle using the L/D ratio used to fly the aircraft in Segment 

1. In the case of a C-172, F3 minimizes at a bank angle of 45.4 degrees. However, 

notice how flat the curve is at the minimum value of F3. The Pilot could fly the turnback 

maneuver anywhere between 40 and 50 degrees without a significant impact on the 

altitude loss per degree of turn. 
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                                 Figure 6: F3 Function versus Bank Angle 

 

Finally, directing our attention to the F4 function. Here one needs to maximize the 

Aerodynamic Function. This requires maximizing the quantity ( )L

L
C

D
. We can rewrite F4 

as 

                                                  
2

4 ( ) ( )L L
L L

D D

C CL
F C C

D C C
= = =     (10) 

However, using the drag polar of the aircraft, i.e. expressing the drag coefficient as the 

sum of the parasite and induced drag, and expressing the induced drag in terms of the 

lift coefficient, we obtain the following formula for the drag polar 

                                       
0

2

D D LC C C= +      (11) 

Here, 
0DC is the parasite drag coefficient, and  is a coefficient that depends on both the 

planform shape of the wing and the wing aspect ratio. We can now express F4 as 

 

0

2

4 2

L

D L

C
F

C C
=

+
     (12) 
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Figure 7, taken from the Handbook of Aeronautical Knowledge (FAA 8083-25B), 

shows the behavior of L/D ratio and both the lift and drag coefficients corresponding to a 

generic aircraft. 

 

                   
Figure 7: Aerodynamic Coefficients and L/D Ratio for Generic Aircraft 

 

Note, at small angles-of-attack, the drag coefficient approaches a constant value. This 

limit is the parasite drag coefficient 
0DC . If we pick any other angle-of attack, using the 

lift and drag coefficients, we can then determine the value  . Thus, using Figure 7, the 

function F4 can be created for any aircraft. However, if we assume that the Pilot does 

not have Figure 7 available for the aircraft being flown, the F4 function can be created 

using a somewhat different approach. One can determine the coefficients in the above 

formula by using the glide chart in the POH. When the aircraft is flying at the maximum 

L/D, the induced drag is equal to the parasite drag. Since the L/D ratio can be 

determined by calculating the slope of the altitude loss versus distance curve in the 

POH glide chart, one can show the parasite drag coefficient is given by  

 
0

max /

max

( )

2( )

L L D
D

C
C

L

D

=      (13) 
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 To determine the value of 
0DC  we need the lift coefficient at maximum L/D. Since the 

glide chart provides an airspeed to fly for a given weight of the aircraft (i.e. usually gross 

weight), we can calculate the required lift coefficient as  

 
/

2

( / ) cos
( )

1

2

bg

L MaxL D

SL bg

W S
C

V





=     (14) 

Here bgV is the best glide calibrated airspeed, 
SL is the density at sea level, and bg is 

the glide angle at max L/D and is given by 
max

1
tan

( / )
bg

L D
 = . The remaining parameter 

 , can be determined using the formula  

 

max  /

1

2( ) ( )L max L D

L
C

D

 =      (15) 

At this point, the F4 is determined for any aircraft. Since both the value of 
0DC and   are 

positive numbers, it is easy to show that the F4 will be a maximum at the maximum 

value of the lift coefficient, i.e. 
maxLC . This will occur just as we approach the stall angle-

of-attack. Since the aircraft will be in a gliding turn, the accelerated stall speed of the 

aircraft is given by 

                                                
1acc gS SV nV=    (16)   

where n is the load factor during the turn, and 
1gSV is the 1-g stall speed of the aircraft. 

Since the optimum bank angle in Segment 1 is 45 degrees, and assuming the shallow 

flight path approximation (i.e., 12g  deg), the load factor on the aircraft would be 

approximately 1.41. Therefore, the correct speed to fly in Segment 1 is not the speed for 

maximum L/D (i.e. maximum glide), but the speed corresponding to the angle-of-attack 

for maximum CL. Clearly, it is not recommended to fly the gliding turn at just above the 

accelerated speed, and one would need to add about 10% pad to the accelerated stall 

speed when flying this gliding turn. Figure 8 shows the F4 function versus the lift 

coefficient for a C-172. As can be seen in the Figure 8, there is approximately a 10% 

impact in the altitude loss per degree of turn when adding the 10% airspeed pad. 
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                                      Figure 8: F4 Function versus Lift Coefficient 

 

 We now turn our attention to Segment 3 of the turnback maneuver. Since the 

final segment is a turning segment, the aerodynamics are identical to that discussed for 

Segment 1. The final turning angle,  , is somewhere between 0 and 90 degrees. 

However, since Segment 3 is being flown close to the ground, with a potential for 

overshooting the runway centerline, one needs to view this final segment with caution. 

Since the aircraft is transitioning from a wings level gliding flight in Segment 2, to a 

gliding turn in Segment 3 at low altitude, rolling into a steep bank at that point leaves too 

much of a chance for the Pilot to lose precious remaining altitude during the bank. If we 

initiate the bank angle at 15 degrees at the same airspeed flown in the Segment 2, 

increasing the bank gradually as necessary in order to avoid a runway overshoot, the 

Pilot can avoid an accelerated stall by keeping the maximum bank angle to no more 

than 45 degrees. Recall, the actual distance flown in Segment 2 is somewhat less than 

D , since the final turn needs to be initiated prior to the DER. Note that the F3 function in 

Figure 6 is about a factor of 2 higher with a 15-degree bank, than at a 45-degree bank. 

Thus, holding a 15-degree bank angle will give rise to a larger altitude loss in Segment 

3 than with a 45-degree bank angle. However, this is accounted for in the 

aerodynamics.  

The lead for initiating the final turn, i.e., the distance from the DER to the 

beginning of Segment 3, as shown in Figure 1, is given by  
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 0 3 Tan( )
2

L R


=      (17) 

Here R3 is the radius of the turn in Segment 3, and  is the previously determined 

intercept angle. The radius R3 is determined by the true airspeed and bank angle flown 

in Segment 3. In addition, it is important for the Pilot to understand that the final turn will 

end over the centerline of the runway and the aircraft will run out of altitude at some 

distance down from the DER. This distance down the runway from the DER where the 

altitude above the runway is zero, is also shown in Figure 1, and is given by  

 3 Tan( )
2

DL R


=     (18) 

Figure 9 show both LD and L0 as a function of the intercept angle. Note, under no wind 

conditions, we see that 
0 DL L= . 

 

 Figure 9: Segment 3 Lead Distance, L0 and Unusable Runway Length, LD versus   

 

To obtain the altitude loss in the turnback maneuver, we add the altitude loss in 

the 3 segments together. Tables 1 and 2 show the C-172 aerodynamic parameters 

used to determine the altitude loss in the 3 segments. The aircraft is at gross weight 

(2300 lbs.) and the turnback maneuver is being flown at sea level under no wind 

conditions. 
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   Table 1: C-172 Parameters Used to Determine Altitude Loss in Turnback Maneuver 

Parameter 
 

Value 

SV = Clean Stall Speed 1-G 50 KCAS 

W/S= Wing Loading at Gross Weight 13.2 (lb./ft^2) 

maxLC = Maximum Lift Coefficient 1.556 

Vbg = Best glide speed 65 KCAS 

(L/D)max = Maximum Lift to Drag Ratio 9.09 

0DC = Parasite Drag Coefficient 0.0506 

k=Induced Drag Coefficient 0.0597 

max( )L

L
C

D
 

12.4 

 

 

 

Table 2: C-172 Parameters Used in the 3 Segments of Turnback Maneuver 

Parameter Segment 1 Segment 2 Segment 3 
V (KCAS) 65 65 65 

 (deg) 45 0 15 

LC  1.304 0.9224 0.9549 

DC  0.1522 0.1014 0.1050 

/L D  8.57 9.09 9.09 

( / )LC L D  11.17 8.39 8.68 

glide (deg) 9.37 6.28 6.50 

Rate of Descent (fpm) 1072 720 745 

Radius of Turn (ft) 379 Wings Level 1406 

Load Factor 1.414 1.0 1.035 

( / )dh d  (ft/deg) 1.08 110 ft/1000 ft horizontal 2.79 

 

Note that we chose to keep the airspeed in Segment 2 and 3 the same, however, in the 

case of a C-172, the airspeed in Segment 1 turns out to be the same in all 3 segments. 

In addition, the 65 KCAS just happens to be the best glide speed of a C-172 at gross 

weight. This result depends on the aerodynamic characteristics of the aircraft being 

flown. Table 3 shows a comparison of the performance parameters of 16 different 

aircraft, both fixed gear and retractable. Here, we show the KCAS for both V1 and V2, 

and both the turn radius and the rate of turn of the aircraft in Segment 1. Thus, Schiff’s 

statement of flying the aircraft at best glide speed or slightly lower is not completely 
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accurate, since Table 3 shows considerable differences between V1 and V2 for some of 

the aircraft. 

 

       Table 3: General Aviation Aircraft Performance Parameters 

Aircraft 
V1(Knots)  V2(Knots) V2-V1 

(Knots) R1(ft) 
Turn Rate 
(deg/sec) 

C-172 65 65 0 379 16.8 

C-177 72 74 2 465 15.2 

C-182 73 70 -3 478 15 

PA28-180 77 76 -1 532 14.2 

PA28-235 85 85 0 648 12.8 

PA32-300 80 87 7 574 13.7 

SR22 97 92 -5 844 11.3 

C-172RG 75 73 -2 505 14.6 

C-177RG 80 75 -5 574 13.7 

C-182RG 74 80 6 491 14.8 

C-210 96 88 -8 827 11.3 

PA28R-201 78 92 14 546 14 

PA24-260 88 87 -1 695 12.4 

PA32R-300 81 80 -1 589 13.5 

F33 85 110 25 648 12.8 

A36 82 105 23 603 13.3 

 

 

Thus, depending on the aircraft, one may need to fly a different airspeed in 

Segments 2 and 3 than is flown in Segment 1. However, if V2 is not equal to V1, the 

bank angle in Segment 3 will be limited by the load factor 

1

220.83( )

gS

V
n

V
= , where 

1gSV is 

the 1-g stall speed of the aircraft. This bank angle ensures that the airspeed flown 

provides a 10% pad above the accelerated stall speed at that bank angle. Thus, the 

maximum bank angle that should be flown in Segment 3 is given by  

 1 2

max

2

1
Cos 1.21( )

gSV

n V
 = =      (19) 

Using these performance parameters in Table 2, we can derive the altitude loss 

in each segment as shown in Figure 10 below.  
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                                Figure 10: Altitude Loss in 3 Segments of Turnback Maneuver 

 

We observe a region close-in to the DER which is labeled “
1

2
D

R
 ”, wherein, the 15-

degree bank would limit the aircraft from rolling out on the runway centerline. We 

determine the length of this region by requiring the aircraft to initiate a turnback 

maneuver no closer than the required lead distance L0. The resulting minimum value of 

min

1

( )
D

R
is given by 

 3
min

1 1

( )
RD

R R
=      (20) 

Here we have utilized the shallow flight path approximation (i.e., 12 degg  ) 
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Since the airspeed in all three segments is flown at 65 KCAS, the ratio 3

1

R

R
is given by 

 3 1

1 3

Tan( )

Tan( )

R

R




=      (21) 

Thus, for 
1 =45 and 

3 =15 degrees, the minimum value of 
1

( )
D

R
 is 1.93. Therefore, 

initiating the turnback maneuver at no closer than twice the radius R1, will accomplish 

both objectives, i.e. keeping the intercept angle less than 55 degrees to the runway 

centerline, and having sufficient lead to execute the 15-degree bank in Segment 3, 

while rolling out over the runway centerline.  

The behavior of the altitude loss in each segment is intuitive. In Segment 1, the 

further from the DER the aircraft is located when initiating the turnback maneuver, the 

smaller the intercept angle and thus the total number of degrees turned is reduced. In 

Segment 3, the number of degrees turned is dependent on the intercept angle. Thus, 

the smaller the intercept angle, the lower the altitude loss in this segment. Finally, 

Segment 2, which shows the altitude loss in this segment increasing as a function of 

distance from the DER. Clearly, as the distance from the DER get larger, the altitude 

loss in Segment 2 becomes the dominant contribution to the total altitude loss. This can 

be seen in the slope of the curves for both total altitude loss and altitude loss in 

Segment 2 being nearly identical. 

           At this point, we have developed the information that answers the question, “How 

much altitude is needed for a successful turnback maneuver?” Clearly it is a function of 

distance from the runway. The key question that needs to be answered is: “How does 

the Pilot use this information in determining whether to attempt a turnback maneuver?” 

One possibility would have the Pilot setup a waypoint on the GPS corresponding to the 

DER with the altimeter set to zero at that location. The Pilot or Co-Pilot could monitor 

the distance from the DER with a callout for a go/no-go for a turnback maneuver during 

the aircraft climb-out. For example, even if the Pilot had Figure 10 on his kneeboard 

when the engine failed, the Pilot must make a quick decision under these stressful 

conditions as to whether the aircraft is located at the distance from the DER that 

corresponds to the aircraft’s height above the DER. A better alternative to mitigate the 

risk of a performing an “Impossible Turn”, would be to have a chart that the Pilot could 

view prior to departure, which would show when “Never to attempt a turnback 

maneuver”. This chart would show the minimum runway length needed for a PSTM. The 

Pilot could view the chart on the ground prior to departure and determine whether the 

runway length was at or greater than the RMRL. If the runway length was at/above the 

RMRL, the Pilot could monitor the aircraft performance during the takeoff and climb-out, 

in order to ensure the aircraft performance was consistent with the aircraft performance 

used to determine the RMRL. The best indicator of the required performance of the 

aircraft would be the height of the aircraft over the DER. If the height of the aircraft over 
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the DER was at or above its expected value, the Pilot would consider the aircraft 

performance as “to be expected” and could initiate a turnback maneuver if necessary. 

Before delving into how to develop the RMRL chart, we need to discuss another 

issue that relates to the question: “Should the Pilot attempt a turnback maneuver at a 

high-density altitude airport?” Consider an airport at a density altitude of 5000 MSL. We 

can derive a set of similar curves of altitude loss for this case. Here the anticipated 

parameters that will change are: (1) Altitude loss per degree of turn due to the reduction 

in the air density, (2) Increasing intercept angle due to the increased radius of the turn in 

Segments 1, and (3) Increased total number of degrees turned. Figure 11 shows a 

comparison of the altitude loss in the 3 segments of a turnback maneuver, at both sea 

level and a 5000-foot density altitude, in the case of a C-172 at gross weight, departing 

under a no-wind condition.  

   
Figure 11: Effect of Density Altitude on Altitude Loss in the Turnback Maneuver 

                                                 (Sea Level and 5000 MSL) 

 

We observe the major effect of the increased altitude loss arises from Segments 1 and 

3. The largest difference in the total altitude lost occurs close in to the DER, with an 

increase of about 81 feet. Figure 12 shows the effect of the density altitude on the 

intercept angle. As can be seen, the maximum change in the intercept angle occurs 

close in to the DER and is about 6 degrees. In Segment 1, the total turning angle is 

0

100

200

300

400

500

600

700

800

900

1000

1100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

A
lt

it
u

d
e 

Lo
ss

 (
ft

)

Distance from DER (ft)

Effect of Density Altitude on Altittude Loss in 3 Segments of 
Turnback Maneuver

Total Altitude Loss Altitude Loss in Segment 1

Altitude Loss in Segment 2 Altitude Loss in Segment 3

________ Sea Level

_ _ _ _ _ _  5000 MSL

D/R1 <2



29 
 

180+ , an increase of 6 degrees in the intercept and has only a small effect in the total 

number of degrees turned. The major portion comes from the density effect in 1( )
dh

d
. In 

Segment 3, the major effect comes from the from both the increase in total number of 

degrees turned, and the density altitude effect on 3( )
dh

d
. 

 

                                 Figure 12: Effect of Density on Intercept Angle 

 

At this point, we have created all the information necessary to produce the RMRL 

chart. In Section 4 we move on to Step 3, which outlines the methodology used to 

generate the RMRL chart. 
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4. Creation of the RMRL Chart  

 As stated earlier, the key to a successful turnback maneuver is to be sure that 

the aircraft is at or above the required altitude at the correct distance from the DER. 

This will depend on the length of the runway and the takeoff/climb profile used for the 

departure. Figure 13 shows a generic takeoff/climb profile which will be used to develop 

the RMRL chart. In this profile, the aircraft will start the takeoff roll at the beginning of 

the runway using the following scenario: 

(1) The aircraft performs a short-field takeoff over a 50-foot obstacle at full power 

and at Vx. 

(2) At 50 feet AGL the aircrafts pitches over and accelerates to a yet to be 

determined airspeed 
*V , with a corresponding flight path angle * . 

(3) The aircraft continues to climb out at 
*V until at some distance from the DER the 

engine fails. 

(4) The region after the engine failure (approximately 5 seconds) will be used to 

configure the aircraft to the proper airspeed for Segment 1. 

(5) The aircraft initiates the 45-degree bank at a distance D  from the DER. 

     
                          Figure 13: Generic Takeoff/Climb Profile for the Turnback Maneuver 
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The RMRL chart requires accumulating the distances L1 and L2, and the heights 

from the 50 feet obstacle height to the height at which the aircraft attains the airspeed 
*V . When the engine fails at some distance from the DER, if the aircraft holds the 

attitude as suggested by Schiff, a Cessna 172 can decelerate as much as 10 knots 

during the 5 second so-called “Human Factors” region. If the aircraft decelerates below 

the required airspeed for Segment 1, i.e., V1, the Pilot will need to lower the nose and 

lose altitude to accelerate to V1. Note that at the point of engine failure, the loss of thrust 

will not allow the aircraft to gain the additional altitude expected at the distance D  from 

the DER. This lost altitude is given by *TanHL  . In addition, due to non-optimal Pilot 

skills, the aircraft may fall below the altitude of the aircraft at the time of the engine 

failure, i.e., an additional altitude loss of piloth . However, in this analysis we will assume 

0piloth = , and thus, the aircraft will be at the altitude corresponding to the point at which 

the engine failure occurred. One does not consider this a safety factor, but as an 

estimated correction to the aerodynamic model. 

After engine failure, the forces decelerating the aircraft are the drag and the 

component of gravity acting backward along the original flight path corresponding to * . 

Figure 14 shows the forces in a steady climb, while Figure 15 shows balance of forces 

along and perpendicular to the flight path. 

 

               

                                              Figure 14: Forces in a Steady Climb 
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             Figure 15: Balance of Forces in a Steady Climb 

 

The flight path angle * depends on the difference between the thrust at the propeller 

and the drag. When the thrust is lost due to the engine failure, the net forces along the 

flight path, which is composed of the drag and the component of the weight of the 

aircraft acting backwards along the flight path causes the aircraft to decelerate. How 

fast the aircraft decelerates over the 5 seconds depends on the magnitude of the drag 

and the component of the weight along the flight path. As mentioned above, a C-172 

can decelerate 10 knots over the 5 second time-period. The selection of the climb 

speed 
*V will depend on how much the airspeed is reduced. If at the time of engine 

failure, the aircraft is immediately pitched down to level flight attitude, the deceleration 

due to the gravity component will be reduced and the aircraft will not slow down as 

much. However, with proper training in the stick and rudder skills, we will assume the 

aircraft slows down by 5 knots, and thus, the selection of the airspeed for the climb 

phase will be determined by *

1 5V V= + . 

Since we have determined 
*V , the requirement is to determine the corresponding 

climb angle * . However, what is really needed is a chart showing the climb angle 

versus calibrated airspeed, as a function of altitude. The propeller data is used to 

develop this type of chart. We have taken Figure 16 from the Ref. 1, “Performance of 

Light Aircraft” by Lowry, wherein a “Bootstrapping Method” was employed to back out 

this data over several C-172 flights. The “Bootstrapping Method”, utilizes the correct 

form of the aerodynamic parameters which contain unknown constants corresponding 
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to the aircraft flown. One then flies the aircraft under different flight scenarios to record 

the aircraft performance, and thus back-out the unknown constants. Although Figure 16 

corresponds to a 160HP C-172 with a gross weight of 2400 lbs., the performance data 

for the aerodynamic model was taken from a 160HP C-172 with a gross weight of 2300 

lbs. However, we will use this chart to help estimate the climb angle for the 1977 C-172 

at . Note that both aircraft utilize the identical propeller.  

 

 

                                Figure 16: Climb Angle versus Calibrated Airspeed 

 

To determine the climb angle for 
*V = 70 KCAS, we use the POH to determine 

the maximum rate of climb at the corresponding density altitude of the airport. For 

example, in the case of a sea level departure at standard temperature, the maximum 

rate of climb is 770 feet per minute, at an airspeed of 73 KCAS. Since the rate of climb 

is given by *

1 SinRC V = , we determine the climb angle to be 5.98 degrees.  Using 

Figure 16 to determine the variation in the sea level climb angle versus calibrated 

airspeed, we see that at 70 KCAS, 
* would be approximately 6.5 degrees. This would 

be the climb angle used for determining the RMRL for the C-172 aircraft. 

*V
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However, without Figure 16, one would need to develop the identical chart. It is 

important for all Pilots to have a basic understanding of how Figure 16 is created, since 

this is the key to producing the RMRL chart. The procedure is described below. 

 Propeller aerodynamic theory provides a simple relationship for the thrust 

produced by the propeller. This is given by  

 2 4

TT C n d=      (22) 

Where CT is the thrust coefficient,  the air density, n is the propeller revolutions per 

sec, and d is the diameter of the propeller. Thus, for any propeller, one needs the thrust 

coefficient to determine the propeller thrust at any value of n and air density. We can 

rewrite the formula for the climb angle as   

 
2 4[ ]

Sin T
C

C n d D

W




−
=      (23) 

Where we have replaced with C so that the reader better understands it represents 

the climb angle during the climb-out. 

One can express the drag as  

 21

2
DD C S V=      (24) 

Thus, the climb angle can be expressed as  

 
2

2
2[2( )( ) ]

Sin
2

T
D

C

C d
C S V

S

W

J



−

=      (25) 

Equation (25) contains a new parameter, J, which is the propeller advance ratio, and is 

shown in magenta. It is the ratio of the forward velocity of the aircraft to the propeller tip 

speed and is given by 

 
V

J
nd

=      (26) 

Using eq. (11) for the drag coefficient, we can now express the climb angle as  

 
0

2
2 2

2
[2( )( ) ( )]

Sin
2

T
D L

C

C d
C kC S V

J S

W




− +

=      (27) 

The lift coefficient, CL can be determined by Cos CL W = . However, in the case of 

shallow climb angles, one can set L W , and thus the lift coefficient is determined by 

*
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2

2( )

L

sl C

W

SC
V

=      (28) 

Here we express the lift coefficient in terms of calibrated airspeed VC, rather than TAS. It 

is best to express the climb angle in terms of the calibrated airspeed, i.e.,  

                                             
0

2
2 2

2
[2( )( ) ( )]

Sin

2( )

T
D L sl C

C

C d
C kC V

J S
W

S




− +

=      (29) 

For consistency, we can also express J in terms of calibrated airspeed, i.e., 

                                                                        

sl
CV

J
nd




=      (30) 

Thus, when the climb angle is expressed by eq. (29), the density effect only enters 

through the J parameter, which in turn affects the thrust coefficient. 

To determine the climb angle, we will need to determine CT and J. Although we 

know V and d, in the case of a fixed-pitch propeller, the value of n is not known before 

hand, since it is determined by the equilibrium of the torque being delivered by the 

crankshaft and that being absorbed at the propeller by the aerodynamic forces in the 

plane of rotation of the propeller. However, if one flies the aircraft at a particular 

calibrated airspeed, the Pilot can read the tachometer and determine the propeller 

rotation rate in rev/sec. With this knowledge, one can compute the propeller advance 

ratio. Thus, what is left to determine is the thrust coefficient CT.  

 Using propeller aerodynamics, we can determine three important propeller 

parameters. These are: (1) Thrust coefficient CT (2) Power coefficient CP and (3) 

Propeller efficiency , all as a function of the propeller advance ratio J. Figure 17, taken 

from Lowry, shows the propeller characteristics for a McCauley 7557 propeller, installed 

on a 1977 C-172. 
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                    Figure 17: Propeller Characteristics for McCauley 7557 on C-172 

Using eq. (27), we can determine the climb angle at any particular calibrated 

airspeed, density altitude and aircraft weight. Again, we observe the key parameters in 

the magnitude of the climb angle are the aircraft weight and air density. Both higher 

aircraft weight and density altitude reduce the climb angle. The reader now has the 

knowledge to develop Figure 16 for the aircraft being flown. At this point, we have all the 

information necessary to develop the RMRL.  

For the reader unable to obtain the propeller characteristics for their aircraft, one 

approach is to flight test the aircraft to obtain the data. The method utilized will require a 

GPS onboard the aircraft. We describe the method below: 

(1) Set a waypoint for the runway centerline at the DER 

(2) Set the altimeter to read zero at this waypoint 

(3) Using the POH, determine VX and VY (KCAS) for the density altitude of the 

departure airport 

(4) Determine at least 4 airspeeds for 
*V , equally spaced between best angle 

and best rate  

(5) Define a takeoff/climb profile you intend to use on all your takeoff’s 

(6) Set the runway course in the GPS so the Pilot can track the centerline of the 

runway 
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(7)  Once the aircraft is established at 
*V , trim the aircraft and maintain 

*V  up to 

1200 AGL while tracking the centerline of the runway. Also note the aircraft 

groundspeed and in the case of a fixed-pitch propeller, the RPM on the 

tachometer 

(8) Note the altitude when the aircraft is over the DER (i.e., over the DER 

waypoint) 

(9) Record the aircraft altitude and groundspeed every 0.1 nm on the GPS all the 

way up to 1200 AGL 

(10) Plot the altitude versus distance from the DER in feet (i.e. 0.1 nm is 

approximately 600 feet) 

(11) Draw a best fit straight line through the data points 

(12) The approximate climb angle is given by the inverse tangent of the slope 

of the line 

This procedure should provide a reasonable estimate of the climb angle during the 

climb phase of the departure. However, if the winds are not calm during the above flight 

experiment, a correction for the wind can be obtained using the methodology discussed 

in Appendix A.  

 The method that is used to determine the RMRL is based on first determining the 

required height of the aircraft over the DER, DERh . The second step is to generate a 

curve which shows the altitude of the aircraft above the DER as a function of the runway 

length. Using the determined value of DERh , the RMRL can be read off the chart. Thus, 

the key step in producing the RMRL chart is to develop a method to determine DERh . 

 We start by expressing the height of the aircraft above the DER as a function of 

the distance from the DER, i.e., D . Thus, 

 TanDER Ch h D = +      (31) 

Here, C is the climb angle corresponding to the calibrated airspeed 
*V . However, 

recall from Figure 13, there is a region LH, which corresponds to a 5-second delay 

before initiating the turnback maneuver. During this time, the aircraft does not have the 

thrust to continue the climb gradient, and while configuring the aircraft to V1, the aircraft 

may drop below the altitude at the point of the engine failure. However, we will assume 

that 0piloth = , so that the aircraft descends to the altitude at which the engine failure 

initially occurred. Thus, the aircraft will need to recapture this lost altitude by the time it 

reaches the DER. Therefore, we can express this by modifying eq. (31) as follows: 

 Tan TanDER c H ch h D L = + −      (32) 

In the case of shallow climb angles (i.e. less than 12 degrees), we can express LH as 



38 
 

 *

1

1
( )

2
H H

SLL V V t



= +      (33) 

Where 
*V is the calibrated airspeed for the climb, V1 is the calibrated airspeed for 

Segment 1, and tH is the 5-second time between engine failure and time for initiating the 

turnback maneuver. However, with proper stick and rudder skills, this time 
Ht , can be 

reduced to approximately 3 seconds. Note that the density ratio shown in magenta in 

eq. (33), converts the calibrated airspeed to TAS. 

We then require, that at each distance D  from the DER, for which the aircraft 

initiates a turnback maneuver, the expected altitude loss, ha, must be equal to the 

altitude given in eq.(32). The expected altitude loss in the turnback maneuver as 

determined by the aerodynamic model is given by 

                                1 3 1 0(180 2 )( ) [( ) ( ) ] ( )Tana g

dh dh dh
h D L

d d d


  
= +  + −  + −      (34) 

Here L0 is the distance from the DER where the Segment-3 turn is initiated, and is given 

by eq.(17). Equating eq. (32) and (34), we obtain the following equation for hDER,  

  1 3 1 0(180 2 ) ) [ ) ) ] (Tan Tan ) ( Tan Tan )DER g c H c g

dh dh dh
h D L L

d d d
   

  
= +  + − + − + −      (35) 

Equation (35) conveys some interesting information. We see that as D  gets large, 

depending on the sign of the quantity ( Tan Tang c − ), hDER will increase if the sign is 

positive, and decrease, if the sign is negative. Thus, if the glide angle is greater than the 

climb angle, as we get further away from the DER, the aircraft will require more altitude 

over the DER for a PSTM. Since the glide path angle is independent of altitude, one 

would expect such a variation when departing a high-density altitude airport, where the 

climb angle is reduced due to the reduction in the thrust. When departing from sea level 

airports, one would expect the required value of hDER to decrease as D  gets large. This 

effect will be observed when discussing the effect of density altitude on the turnback 

maneuver. In addition, when c g = , as gets large, the intercept angle approaches 

zero, and thus the height above the DER approaches a constant, which is given by  

1180 ) TanDER H c

dh
h L

d



= +      (36) 

 To validate the Schiff ROT, item (1), we need to obtain the fraction of the OAL, 

i.e.,  

 1OAL=( ) (360)
dh

d
     (37) 

D
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Equation (37) arises when one investigates the limiting value of hDER as 
1

D

R
 approaches 

unity. This represents the “270-90” turnback scenario shown in Figure 3. In this case, 

1 3R R= , 1 3) )
dh dh

d d 
= , and 

0D L= . Thus, in this limit, hDER becomes  

                                                   1 1(180 2 ) ) ( )TanDER H c

dh
h L R

d



= +  + −      (38) 

Since, in this scenario, the intercept angle  approaches 90-degrees, we see that  

                                                   1 1360 ) ( )TanDER H c

dh
h L R

d



−  + −     (39)  

Note, eq.(39) contains an additional term, containing both LH and R1 . This term is 

usually small compared to the first term. As an example, in the case of a C-172, this 

term is approximately 19 feet, and thus, one can use the first term in eq. (39) as a 

reference for specifying the value of hDER as a fraction of the OAL.    

 Figure 18 shows the required height of the aircraft over the DER as a function of 

distance from the DER. We also show hDER as a fraction of the “Observed Altitude 

Loss”, so the reader can relate these results back to the Schiff ROT. It is important to 

understand that it is the value of hDER that is the key to determining whether it is a 

PSTM, since the decision to turn back will be based on the RMRL chart. If the 

performance of the aircraft is not as anticipated, and/or the Pilot does not properly fly 

the aircraft during the climb phase, the aircraft will arrive over the DER at a lower 

altitude, and thus, the Pilot should not initiate the turnback maneuver. 
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              Figure 18: C-172 Required Height over DER for a PSTM 

                                (Sea Level, Gross Weight, No Wind) 

 

Now that we have created Figure 18, it will be necessary to create a chart which 

shows the height of the aircraft over the DER as a function of runway length. This chart 

requires the takeoff/climb profile shown in Figure 13. The corresponding chart for a C-

172 at sea level, gross weight, and with no wind, is shown in Figure 19. To generate the 

RMRL, the user selects the distance from the DER and then obtains the value of hDER 

from Figure 18. Using this value of hDER, the user enters Figure 19 and determines the 

RMRL. Figure 20 shows the resultant RMRL chart obtained using the above procedure. 
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a maximum intercept angle of no more than 55 degrees, and will also allow for the 

proper lead distance for the Pilot to roll out of the turn over the runway centerline when 

using a bank angle of 15 degrees in Segment 3. 

 

 

      Figure 19: Expected Height of Aircraft versus Distance from Beginning of Runway 

                                          (Sea Level, Gross Weight, No Wind) 
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                        Figure 20: RMRL for a Potentially Successful Turnback Maneuver 

                          (C-172 at Gross Weight, Sea Level, and No Wind Condition) 

 

                    Figure 20 shows some interesting trends. First, the RMRL is not constant. 

As the value of D increases, the RMRL decreases. To understand this trend, we need 

to go back to Figure 11, which shows the altitude loss in each of the 3 segments. Note 

that as we start from D =800 feet and move outward, the altitude loss in Segments 1 

and 3 are decreasing due to the intercept angle decreasing. However, after a certain 

distance from the DER, the altitude loss in Segment 2 becomes the dominant 

contributor to the total altitude loss. The RMRL decreases since the magnitude of the 

climb angle is slightly larger than the magnitude of the glidepath angle. In this case, the 

aircraft is gaining more altitude climbing outbound than losing coming back, and thus, 

the aircraft does not require as long a runway if the turnback maneuver is initiated 

further out. 

 To understand how to utilize Figure 20, we have added three dashed lines 

corresponding to three different runway lengths at the departure airport. The red line 

corresponding to a runway length of 3100 feet is completely below the RMRL curve, 

and thus, the runway is too short to perform the turnback from any distance from the 

DER. Obviously, here the decision would be not to attempt a turnback maneuver. In this 

scenario, the best option would be to land straight ahead, plus/minus 30 degrees (i.e., 
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assuming no terrain issues). However, in the case of a 3750-foot runway, the Cyan line 

cuts through the curve at 2200 feet from the DER, indicating that beyond this distance 

from the DER, a PSTM is possible. However, this situation alerts the Pilot about 

attempting a turnback too close to the DER. Finally, if the runway length is 4500 feet, 

the green line is above the RMRL curve, and thus, a PSTM may be realized beyond 800 

feet from the DER. Thus, the risk is mitigated by making the decision on the ground 

prior to departure. In addition, one should realize that any time the RMRL is less than 

the departing runway length, there will be an excess of altitude when the aircraft 

completes Segment 3 over the runway. The excess altitude hexcess is given by  

 ( ) tanexcess ch L RMRL = −      (40) 

Where L is length of the departure runway. Thus, if the Pilot departs from a 4500-foot 

runway and initiates a turnback maneuver at 3300 feet from the DER, the aircraft will be 

107 feet above DER when the aircraft rolls wings level over the runway centerline. It is 

important that the Pilots are aware of this prior to departure so they can anticipate the 

possibility of having to dissipate this altitude by adding flaps or slipping the aircraft when 

approaching the DER. 

Another important area of concern relates to Pilots executing a turnback 

maneuver at a high-density altitude airport. Very little information is ever provided by the 

pundits on this subject. Figure 21 shows the takeoff/climb characteristics of the C-172 

departing from an airport with a 5000-foot density altitude. In this scenario, the airspeed 

flown was 70 KCAS and the climb angle was determined to be 4.32 degrees. It is easy 

to see the consequences of the lower climb angle at the 5000-foot density altitude as 

compared to the sea level departure. Figure 22 shows the effect of density altitude on 

the RMRL. Note, as the distance from the DER increases, there is a continual decrease 

in the RMRL for departures at sea level, however, when departing from a 5000-foot 

density altitude airport, the RMRL turns around and increases beyond 2200 feet from 

the DER. Recall that the difference between the climb angle and the glide angle at sea 

level is +0.2 degree, however, at 5000-foot density altitude, the difference is -2 degrees. 

This reversal in sign of the difference, manifests itself as an increase in the RMRL as 

we initiate the turnback further from DER. In addition, since we are not considering 

turning back closer than twice the radius of the turn in Segment 1, the distance from the 

DER to initiate the turnback gets pushed out from the DER due to the radius of the turn 

in Segment 1 increasing , while at the same time, the farthest distance from the DER 

that one would turnback is limited by the runway length at the airport. Thus, the range of 

distance for a PSTM is being squeezed into a narrow region. This can be somewhat 

risky, and that is why the author does not recommend executing a turnback maneuver 

at a high-density altitude airport in an aircraft with a relatively high power-loading, such 

as a C-172 at gross weight. 
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 Figure 21: Effect of Density Altitude on Height above the DER (Gross Weight, No Wind) 
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                     Figure 22: Effect of Density Altitude on RMRL (Gross Weight, No Wind) 

 

 Figure 23 shows the effect of density altitude on the required height of the aircraft 

above the DER. In addition, we have also plotted the fraction of the OAL. Note that at 

the higher density altitude departure, the required height above the DER first decreases 

and then increases. This is due to the sign of the difference between the climb angle 

and glide angle changing sign. This also translates to the higher fraction of the OAL, 

which as one would expect, follows the required height over the DER.  

 In Section 5 we compare the results of the aerodynamic turnback model with the 

Schiff ROT, for when to initiate the turnback maneuver. 
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          Figure 23: Effect of Density Altitude on Height over DER and Fraction of OAL 

                                                      (Gross Weight and No Wind) 
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5. Comparison of the Aerodynamic Model with Schiff’s Rule-of-

Thumb for the Teardrop Turnback Maneuver 

 Now that we have developed Figures 21-23 for a C-172, we can start to validate 

Schiff’s ROT for when to attempt a turnback maneuver. First, let’s recall the Schiff ROT. 

In the Schiff experiment, he states “Do not consider turning back unless both (1) and (2) 

below are satisfied.” 

(1) The aircraft has reached at least 2/3 of the “Observed Altitude Loss (OAL)” 

when passing over the DER, and 

(2) It has reached at least the “Minimum Turnback Height”. 

Since both (1) and (2) must be satisfied together, we will first consider (1). Since “at 

least” means it should be a PSTM when the height over the DER is 2/3 of the OAL, and 

thus, we assume the height over the Der is 2/3 of the OAL. In the case of a C-172, the 

OAL is given by 

 1360( )
dh

OAL
d

=      (41) 

Where the quantity 1( )
dh

d
=1.08 for a C-172 at sea level and gross weight. Thus, the 

value of hobs=389 feet. Satisfying (1) in Schiff’s Rule-of-Thumb, requires the height over 

the DER to be 2/3*hobs, which is equal to 259 feet. Figure 24a shows the Schiff’s ROT 

as applied to a C-172 departing an airport at sea level density altitude, and with no 

wind. We have added a series of lines which represents various climb angles of the 

aircraft used in the takeoff/climb profile. The intersection of the lines of constant climb 

angle with the Schiff “Turnback Height” shows at what distance from the DER the 

aircraft can initiate the turnback maneuver. In the case of a C-172, the climb angle is 6.5 

degrees (i.e., the magenta line). Thus, the application of the Schiff ROT would indicate 

that the turnback maneuver should not be initiated prior to the point designated as TBI 

(i.e., turnback initiation), which is 2800 feet from the DER. There is no other information 

provided by Schiff in terms of any limitations on when the ROT should be utilized. 
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         Figure 24a: Schiff’s Rule-of-Thumb for C-172 (Sea Level, Gross Weight, No Wind) 

 

Figure 24b shows the identical information as 24a, except we have deleted all 

the lines for other possible climb angles. We have also added one additional curve that 

represents the EAL in the turnback maneuver as a function of distance from the DER 

(i.e., the black line), as predicted by the aerodynamic model of the turnback maneuver. 

Notice that the 6.5-deg climb angle line crosses the EAL curve at 1400 feet from the 

DER, and thus, the aircraft would have sufficient altitude to initiate a turnback maneuver 

at any distance beyond 1400 feet. However, the Schiff ROT informs the Pilot not to 

initiate the turnback maneuver prior to 2800 feet from the DER. Therefore, the Schiff 

ROT dismisses all PSTM’s between 1400 and 2800 feet from the DER. 
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     Figure 24b: Schiff’s Rule-of-Thumb for C-172 (Sea Level, Gross Weight, No Wind) 

  

 One might ask the question, “What height over the DER is necessary to realize a 

PSTM for all distances greater than twice R1? The obvious answer to the question is to 

increase the height of the aircraft over the DER. The result of this modification is shown 

in Figure 24c. Here, we have raised the value of hDER to 314 feet to clear the EAL curve 

at a distance equal to twice R1. In this case, a PSTM is realized beyond twice R1, 

provided hDER is 82% of the OAL. Thus, at sea level, the Schiff ROT is overly restrictive 

in that it dismisses all PSTM’s at distances between approximately 800 and 2800 feet 

from the DER. 
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Figure 24c: Schiff’s Rule-of-Thumb for C-172 (Sea Level, Gross Weight, No Wind)  

 

 We now repeat the same process for the scenario of a C-172 departing an airport 

with a density altitude of 5000 feet, at gross weight, no wind, and see how Schiff’s ROT 

fairs in this case. Figure 25 shows the equivalent chart as in Figure 24c. Note, using the 

Schiff ROT with the 4.32-deg climb angle predicts a PSTM at 5100 feet from the DER. 

However, one observes that it is completely below the EAL curve out to 6500 feet from 

the DER. It is necessary to increase the aircraft height above the DER from 301 to 430 

feet, to allow for a PSTM between 800 and 4700 feet from the DER. The value of the 

OAL at a density altitude of 5000 feet is 451 feet. Thus, the fraction of the OAL 

corresponding to the above range of distances from the DER is 0.95.     
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Figure 25: Schiff Rule-of-Thumb for C-172 (5000 MSL Altitude, Gross Weight, No Wind) 

 

Thus, Schiff’s ROT clearly does not provide the correct result for both sea level 

and 5000-foot density altitude turnback maneuvers. In these scenarios, it is better to 

drop (2) in the ROT and increase the fraction of the OAL to 100%. We should also point 

out that the aerodynamic model provides an additional increment of altitude over the 

DER due to the loss of thrust 5 seconds before initiating the turnback maneuver. Recall 

that the height that is added back in over the DER is TanH cL  . 

The above results are dependent on the specific aircraft climb angle and glide 

angle. Rather than utilizing a ROT for determining the “Turnback Height”, it is much 

simpler to just use the aerodynamic model of the turnback maneuver. The major 

advantages of such a tool are: 

(1) Aircraft specific 

(2) Properly corrects for effects of density altitude and aircraft weight 

(3) Takeoff/Climb profiles can be traded in order to determine the best climb 
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(4) Provides the RMRL chart for determining a PSTM from the departure airport 

during the preflight procedure. 

(5) Although safety factors have not been applied to the aerodynamic model in 

this paper, they can be added to account for both uncertainty in the 

aerodynamic coefficients and non-optimal Pilot skills. 

 It’s clear that the Schiff ROT lacks the physical reality of the geometry of the 

turnback maneuver, since it neglects any information about Segment 2, i.e., the wings- 

level portion of the glide. Summarizing the deficiencies of the model: 

(1) The Schiff ROT does not consider the effects of aircraft weight and density 

altitude in the scaling of the OAL determined by the Pilot under a single set of 

conditions.  

(2) The 150% factor used by Schiff dismisses PSTM’s closer to the DER. 

(3) The ROT does not consider the altitude loss in the wings level glide in the 

determining the conditions under which a PSTM can be realized. 

(4) Schiff does not discuss the effect of density altitude on the turnback maneuver, 

and how it impacts his ROT. However, applying Schiff ROT to high density 

altitude turnback maneuvers, show that it does not correctly predict the PSTM.  

(5)   It is assumed that satisfying the two requirements in Schiff’s ROT would 

guarantee a PSTM beyond the point at which no turnback would be initiated. 

However, if the magnitude of the climb angle is smaller than the glide angle, the 

RMRL would need to increase. Thus, there may be a distance from the DER 

beyond which the runway length is too short to execute a PSTM, even with the 

aircraft attaining 100% of the OAL over the DER. This situation clearly occurs 

when operating aircraft with high power loadings at gross weight and at high 

density altitude airports.  

Since the aerodynamic model assumes the turnback maneuver will not be 

initiated prior to a distance 12R from the DER, one can determine a conservative 

estimate of the time beyond the DER at which this distance occurs. In the case of 

shallow climb angles (i.e., less than 12 deg), a conservative approximation for the 

time is given by 

 

2

1

*

2 sl

tbi
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t
gV




=      (42)   

 

Where g=32.174 ft^2/sec, sl


is the density ratio, and both 

*V and V1 are the calibrated 

airspeeds in ft/sec. We can simplify the above formula as follows: 
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Here, 
1V and 

*V are KCAS. 

  For example, in the case of a C-172 climbing out at 70 KCAS at a sea level density 

altitude, the time between passing over the DER and the initiation of the turnback 

maneuver would be approximately 7 seconds. Thus, if the Pilot started timing over the 

DER, after 7 seconds, one could initiate the turnback maneuver provided the correct 

height above the DER had been confirmed.  

 

6. Conclusions 

 We have developed a steady-steady aerodynamic model of the teardrop 

turnback maneuver under no wind conditions. The no wind case provides a 

conservative estimate of the altitude loss during the turnback maneuver as a function of 

the distance from the departure end of the runway (DER). Using the geometric 

properties of the teardrop turnback maneuver, we show the maneuver is composed of 3 

segments. In Segment 1, the aircraft is in a gliding turn to a heading that points the nose 

of the aircraft directly at the DER. In Segment 2, the aircraft is in a wings-level glide 

heading directly at the DER, and in Segment 3, the aircraft is in a final gliding turn to 

align the aircraft directly over the centerline of the runway. The analysis also shows that 

under a no wind condition, the intercept angle to the runway in Segment 2, is only a 

function of the ratio 
1

D

R
,where D  is the distance from the DER at which the turnback is 

initiated, and R1 is the radius of the turn in Segment 1. To avoid large intercept angles, 

i.e. greater than 55 degrees, we need to avoid initiating a turnback prior to 
1

2
D

R
= . Due 

to the low altitude that the aircraft is being flown at in Segment 3, we assume the bank 

angle is programmed to be initially 15 degrees. However, there is sufficient margin 

above the accelerated stall speed to increase the bank angle in Segment 3 to 45 

degrees, to avoid both overshooting the runway centerline, and entering an accelerated 

stall.  

 In the gliding turn segments, the goal is to minimize the altitude loss per degree 

of turn, while in the wings-level glide, we attempt to minimize the altitude loss per 

distance travelled. Using the information in the POH, we describe the procedure used to 

determine the altitude loss in the turnback maneuver as a function of distance from the 

DER where the turnback is initiated. A C-172 was selected to demonstrate how to 

determine this information. These results answer the question of “How much altitude is 

needed for a “Potentially Successful Turnback Maneuver (PSTM)?” The analysis shows 
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that during the gliding turn segments, the altitude loss per degree of turn is a function of 

four parameters. These are: (1) Wing loading, (2) Bank-angle, (3) air density, and (4) 

CL(L/D). We show that the minimum altitude loss per degree of turn occurs when the 

bank angle is between 45 and 46 degrees, with the aircraft operating just above the stall 

angle-of-attack. In the wings-level glide, the aircraft is flown at the maximum L/D ratio to 

minimize the altitude loss per distance travelled. In the case of a C-172, we show that 

the appropriate speed to fly all 3 segments is 65 KCAS, which just by coincidence, 

happens to be the best glide speed in a C-172 at gross weight. This speed also 

provides a 10% safety factor above the accelerated stall speed when flying Segments 1 

and 3. 

 To mitigate the risk in attempting the “Impossible Turn”, we use the calculated 

altitude loss as a function of distance from the DER, to develop a “Required Minimum 

Runway Length (RMRL) chart. This chart shows how much runway is necessary for a 

PSTM. This chart is extremely useful since the Pilot can compare the departure runway 

length with the RMRL and determine whether a PSTM is possible. Thus, the decision 

“When Never to Attempt a Turnback Maneuver”, is decided on the ground prior to 

departure. 

A comparison of the results of the aerodynamic model of the turnback maneuver   

with Schiff’s ROT has been made. We show that the Schiff method does not 

characterize the geometry of the turnback maneuver properly, since is does not include 

any information on the altitude loss in Segment 2.  Using the C-172 for the comparison, 

we show that the Schiff ROT is overly restrictive, in that it dismisses PSTM’s closer in to 

the DER when the turnback maneuver is executed at a sea level airport. The 

aerodynamic model shows that raising the height of the aircraft over the DER to 82% of 

the “Observed Altitude Loss” allows for a PSTM beyond a distance from the DER equal 

to 2R1. 

When the turnback maneuver is executed at a 5000-foot density altitude airport, 

the Schiff Rule-of-Thumb indicates a “Possible Turn” beyond 5100 feet from the DER. 

However, the aerodynamic model shows the “Impossible Turn” from the DER out to 

6500 feet. We also show that by increasing the height over the DER to 95% of the 

“Observed Altitude Loss”, allows for a PSTM from between 2R1 and 4700 feet from the 

DER. Beyond 4700 feet from the DER, the height of the aircraft over the DER needs to 

increase to 115% of the “Observed Altitude Loss”. This is due to the glide path angle 

being greater than the climb angle at this density altitude. In this scenario, we show that 

extremely long runways are required, and the region for which a PSTM can occur is 

narrow. Thus, one should avoid turnback maneuvers at high density altitude airports 

when flying aircraft at gross weight with a relatively high-power loading. 

In addition, the aerodynamic model uses a somewhat different takeoff/climb 

profile than the Schiff experiment, with a  
*V closer to VY rather than midway between VX 

and VY. This is due to V1 being almost identical to 
*V , and thus, after an engine failure, 

requiring the aircraft to give up some altitude to configure the aircraft at V1 airspeed prior 
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to initiating the turnback maneuver. Thus, using a value of 
*V =65 KCAS may have a 

slight improvement in the climb angle, but the additional altitude lost in configuring the 
aircraft back to V1 may offset this advantage. However, the aerodynamic model can 
perform these trade studies. 

Although the paper discusses the performance of the C-172 at gross weight, the 
effect of a reduction in the weight of the aircraft is to increase the climb angle (see eq. 
(29)) and decrease the OAL (see eq.(5)  Thus, one would expect a lower RMRL for a 
PSTM when flying the aircraft at a reduced weight. Note, to fly the same angle-of-attack 
at the reduced weight, the aircraft will need to be flown at a reduced airspeed in each of 
the three segments of the turnback maneuver. This translates to a reduction in turn 
radius and thus, lower intercept angles.  

The author recommends a formal standardized training program for those 

interested in becoming skilled in flying the turnback maneuver. This program should 

include at a minimum: 

(1) Aerodynamics of the turnback maneuver, including creating both the 

expected altitude loss and the RMRL charts for the aircraft being flown 

(2) Stick and rudder skills in performing the turnback maneuver  

(3) Aeronautical decision making and risk mitigation prior to performing the 

turnback maneuver. 

Finally, the most important information that should be taken away from this White 

Paper in regard to the turnback maneuver, is that although it is a relatively simple 

geometric maneuver, a lack of understanding of the “Basic Aerodynamics” of the 

maneuver will enter you into the NTSB book of fatal statistics. When it comes to the 

turnback maneuver, it is important to remember the adage: “The Devil is in the Details!”. 
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Appendix A: A Conservative Approach to Account for the Effect of the 

Wind on the Turnback Maneuver 

The presence of horizontal winds during the turnback maneuver clearly affects 

the outcome of the turnback maneuver. Although the analysis described in the paper 

does not consider the wind, one can develop a relatively simple conservative correction 

to get a handle of the effect of the wind. Figures A1 and A2 show the effect of a 

horizontal wind on the flight path angle. In this example we consider just the 

headwind/tailwind cases. If the flight experiment is performed at a towered airport, the 

current winds from the Tower can be used for the wind speed and direction. In the case 

of a headwind, the equation in Figure A2 can be used to obtain the climb angle relative 

to the air mass, i.e. , given the climb angle relative to the ground, i.e.
G  

 

         Figure A1: Effect of a Horizontal Wind on the Glide Path Angle 
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               Figure A2: Effect of a Horizontal Wind on the Climb/Glide Path Angle 

 

The above corrections can also be utilized when the wind is blowing from an 

arbitrary direction. In the case of a crosswind, the direction of the turn should be into the 

wind.  Application of the wind triangle results in the ground speed and wind correction 

angle given by  
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= −

=
     (44) 

Here  is the angle of the wind relative to the runway heading during the climb, and 

relative to the inbound course being flown directly to the DER in Segment 2. As a 

conservative estimate, one can use the intercept angle in the no-wind scenario as the 

inbound course to the DER. The variable  is the wind correction angle during both the 

climb-out, and the wings-level glide while inbound to the DER on Segment 2. Note that 

the glide path angle in Segment 2 will be a function of 
1

D

R
 (since the intercept angle is 

not constant). Thus, for a given windspeed and wind direction, the resultant glide path 

angle as a function of distance from the DER can be determined. However, in the climb 

phase, the value of both   and  would be constant. Note that the key parameters that 
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control the wind correction angle are the windspeed ratio Wind

T

V

V
, and the relative wind 

angle  . 

 Using the determined climb and glide angles relative to the ground, one 

can employ the analysis described in the paper to obtain a first estimate of the effect of 

the wind on the height above the DER, and hence the RMRL. Figure A3 shows the 

effect of a 15-knot headwind on the resultant RMRL. One observes a considerable 

reduction in the required RMRL. However, under strong headwind conditions, there can 

be a significant consequence of this reduced RMRL when initiating a turnback at large 

distances from the DER. This is due to the excess altitude that the aircraft may have 

accumulated during the climb phase and occurs when there is a significant difference 

between the climb and glide angles. Under this scenario, the aircraft may be too high to 

land downwind, and thus the only alternative would be to fly downwind and attempt a 

gliding 180-degree turn to land upwind. If the aircraft does not have enough altitude to 

initiate the turn at the beginning of the departing runway, the turn may need to occur 

midfield, which then brings in the issue of obstacles which can be encountered during 

the final turn. The advantage of the aerodynamic model is that this is issue can be 

flagged during the preflight briefing while on the ground, which can then alert the Pilot to 

such a potential situation.  

Regarding the estimate of the time beyond the DER before initiating the turnback 

maneuver, one can use the following equation to estimate ttbi, in the presence of a wind 
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sl
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G

V

t
V




=      (45) 

In the case of sea level departure with a 15-knot headwind and a 70 KCAS climb 

speed, the delay time before initiating a turnback would be about 10 seconds after 

passing over the DER. 
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 Figure A3: Effect of 15-Knot Headwind on the RMRL (C-172, Gross Weight, Sea Level) 
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